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ABSTRACT 
Sequential recommendation aims to predict the next item which 
interests users via modeling their interest in items over time. Most 
of the existing works on sequential recommendation model users’ 
dynamic interest in specifc items while overlooking users’ static 
interest revealed by some static attribute information of items, e.g., 
category, brand. Moreover, existing works often only consider the 
positive excitation of a user’s historical interactions on his/her next 
choice on candidate items while ignoring the commonly existing 
negative excitation, resulting in insufciently modeling dynamic 
interest. The overlook of static interest and negative excitation 
will lead to incomplete interest modeling and thus impedes the 
recommendation performance. To this end, in this paper, we pro-
pose modeling both static interest and negative excitation for dy-
namic interest to further improve the recommendation performance. 
Accordingly, we design a novel Static-Dynamic Interest Learning 
(SDIL) framework featured with a novel Temporal Positive and Neg-
ative Excitation Modeling (TPNE) module for accurate sequential 
recommendation. TPNE is specially designed for comprehensively 
modeling dynamic interest based on temporal positive and nega-
tive excitation learning. Extensive experiments on three real-world 
datasets show that SDIL can efectively capture both static and 
dynamic interest and outperforms state-of-the-art baselines. 
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1 INTRODUCTION 
Sequential recommender systems (SRSs) aim to generate sequential 
recommendations by predicting the next item which interests a 
given user. SRSs generally model the user’s dynamic and timely 
interest in items from a sequence of historically interacted items for 
the recommendation. Benefting from the strength of well-capturing 
users’ interest changes over time, SRSs are able to provide more 
accurate and timely recommendation results to users [24, 25, 31, 33]. 

A variety of SRS methods based on diferent models including 
Markov chain models, latent representation learning models, and 
deep learning models have been proposed in recent years. For in-
stance, Markov chain-based SRSs adopt Markov chain models to 
model the frst-order transitions over user-item interactions within 
an interaction sequence to predict the probable next item [21, 23]. 
Distributed representation learning-based methods map each in-
teraction into a latent representation via capturing the contextual 
information for next-item recommendations [12]. In recent years, 
advanced models including shallow or deep neural models have 
been employed in SRSs to improve the recommendation perfor-
mance. For example, Recurrent Neural Networks (RNN) have been 
utilized to model the long- and short-term sequential dependencies 
in a sequence of interactions for next-item recommendations [10]. 
Convolutional Neural Network (CNN) [39] and self-attention [14] 
models have been incorporated into SRSs for capturing more com-
plex sequential dependencies (e.g., skip dependencies or collective 
dependencies) for next-item recommendations. These SRS methods 
have achieved remarkable recommendation performance. 

Although remarkable recommendation performance has been 
achieved, there are still some signifcant gaps which prevent the 
further performance improvement of existing SRS methods. To 
be specifc, most of the existing SRSs only model users’ dynamic 
interest in items while overlooking users’ static interest [41] (Gap 1). 
However, static interest is also an important factor to determine 
which item to interact with for a given user. In this paper, dynamic 
interest means users’ interest in specifc items, which are captured 
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Figure 1: An example of recommendations via modeling pos-
itive excitation only (existing methods) and modeling both 
positive and negative excitation (our proposal). Clearly, the 
latter achieves better performance via ranking the ground-
truth next item AirPods at the Top-1 position in the recom-
mendation list. 

from the ID information of a sequence of items interacted by each 
user. For instance, a user may be interested in iPhone 12. Item ID 
often changes frequently in most sequences, leading to frequent 
fuctuations of users’ dynamic interest. Static interest refer to 
users’ interest at a relatively higher level (e.g., item category or 
brand) and are usually more stable and change less frequently. For 
instance, a user may be interested in Apple products. Obviously, 
static interest changes less frequently than dynamic interest. 

More importantly, most of the existing SRSs cannot thoroughly 
capture users’ dynamic interest since they often only model the posi-
tive excitation while overlooking negative one (Gap 2). In SRSs, the 
positive (resp., negative) excitation refers to one prior interac-
tion has a positive (resp., negative) impact on the next interaction. 
For instance, as an individual user, Alice may purchase a lens after 
she has purchased a Canon camera. However, it is unlikely that 
she will purchase another Nikon camera in a short period. In such 
a case, the purchase of Canon camera has positive excitation on 
the purchase of lens and negative excitation on that of Nikon cam-
era. Clearly, negative excitation is an important signal to indicate 
which item may not be of the user’s interest at the next time point 
and thus is necessary for accurate sequential recommendations. 
Although a few works in the literature have tried to model excita-
tion for sequential recommendations, they generally only consider 
the positive excitation while ignoring the negative one [28] [34]. 
For example, Wang et al. [28] defned a short-term and life-long 
positive self-excitation function for next-item recommendations. 

Aiming at bridging the aforementioned two signifcant gaps in 
exiting SRSs, we propose a novel Static-Dynamic Interest Learning 
(SDIL) framework. SDIL is able to comprehensively model users’ 
static and dynamic interest in items for generating accurate se-
quential recommendations. SDIL consists of (1) a Static Interest 
Modeling (SIM) module, (2) a Dynamic Interest Modeling (DIM) 
module, and (3) a next-item prediction module. To be specifc, given 
a sequence of items interacted by a user, the corresponding attribute 
information of these items is input into the SIM module to capture 
the static interest of the user. Meanwhile, the ID information of 
these items is imported into the DIM module to comprehensively 
capture the user’s dynamic interest. Then, both types of interest are 

well integrated as the input of the downstream prediction module 
for the next-item prediction. 

More importantly, we devise a novel Temporal Positive and 
Negative Excitation Modeling (TPNE) framework to quip the DIM 
module, which constitutes the main contribution of this work. In-
spired by [28], TPNE is built on the basis of the temporal point 
process (TPP) [22], which is a classical model for modeling dis-
crete event sequences in a continuous time period. In TPNE, frst, a 
relation-based temporal module is designed to model the positive 
or negative excitation of each of a user’s historical interactions on 
his/her next choice on candidate items. Here, the relation mainly 
refers to the substitute/complementary relations between items, 
which are extracted from the "co-click" (of items), "co-purchase" 
data. Then, a novel time decay kernel function is particularly de-
signed to measure the excitation strength of each historical interac-
tion according to the time interval between it and the next choice. 
Time interval is a key factor to determine whether the excitation 
strength is strong or weak. [28, 34] 

The main contributions of this work can be summarized below: 

• We propose a novel Static-Dynamic Interest Learning (SDIL) 
framework for comprehensively modeling users’ interest 
in items. SDIL consists of a static interest modeling (SIM) 
module, a dynamic interest modeling (DIM) module, and a 
next-item prediction module. 

• We devise a novel Temporal Positive and Negative Excitation 
Modeling (TPNE) framework to quip the DIM module. TPNE 
is good at modeling both the positive and negative excitation 
as well as the excitation strength. 

• We evaluate our SDIL on three real-world datasets with dif-
ferent characteristics. Extensive experiments not only show 
the consistent superiority of SDIL over state-of-the-art base-
lines but also verify the rationality and efectiveness of our 
design in SDIL. 

2 RELATED WORK 

2.1 Sequential Recommendation 
Sequential recommendation intends to recommend items that may 
interest users by modeling the sequential dependencies across users’ 
historical interactions. A variety of methods have been proposed for 
the SRS task including rule-based methods [37], KNN-based meth-
ods [13], Factorization machine-based methods, and Markov chain-
based methods [7, 21]. Nevertheless, these methods fail to model the 
long user behavior sequences in terms of the limited representation 
ability of models. Recent years have witnessed the success of deep 
learning-based methods applying in user modeling [8, 9], various 
models like CNN-based model [39], RNN-based models [10] [11], 
self-attention based models [14] [40] were explored for SRS task. 
We briefy review attention-based SRS methods, which are most rel-
evant to our work. The self-attention mechanism was proposed by 
Vaswani et al. [26]. Benefting from its strong ability to model the 
correlations among context information, many works employed it 
in SRS by intensifying the correlation between important historical 
items and target items. Li et al. proposed the NARM [16], which 
leverages a global and local encoder with an attention module to 
model both user short- and long-term interest. Wang et al. [32] 
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propose the ATEM, which is an attention-based transition embed-
ding model. It builds the attentive context embedding without order 
assumption. Kang et al. [14] utilizes the transformer architecture 
to bridge the item-item relationship, which gains signifcant per-
formance in the next-item prediction task. However, all of these 
methods only focus on the item relations s within sequences, over-
looking the vital temporal signals, which might lead to the sequen-
tial patterns being hard to generalize on unseen timestamps or 
diferent time intervals. 

2.2 Time-sensitive Recommendation 
Temporal recommendation considers the temporal evolution of user 
interest in item transition, represented by methods based on matrix 
factorization. TimeSVD++ [15] achieved strong results by splitting 
time into several bins of segments and combining it into the CF 
framework. Bayesian Probabilistic Tensor Factorization(BPTF) [36] 
is proposed to include time as an extra dimension for the tensor 
factorization, which is an extension of traditional MF methods. 
After that, a variety of works attempt to model the long- and short-
term user interest separately. For instance, Zhu et. al. [43] propose 
the TimeLSTM to capture users’ long and short-term dynamic 
interest through the specifc time gates. Cai et. al. [1] propose the 
LSHP, combining the short-term and long-term Hawkes Processes 
based on diferent segments of user history to predict the type and 
time of the next action in sequential online interactive behavior 
modeling. Wang et. al. [28] also leverages the Hawkes Processes to 
model the user repeat consumption behavior from the perspective 
of short- and life-long terms. After that, Wang et al. [29] designs 
the multiple forms of temporal decay functions for item relations 
in the user interaction history. Recently, Wang et al. [27] have 
devised relational intensity and frequency domain embeddings 
to adaptively determine the importance of historical interactions. 
Besides, Fan et.al. [5] design a new framework TGSRec upon a 
pre-defned continuous-time bipartite graph, which can capture 
collaborative signals from both users and items, as well as consider 
temporal dynamics within sequential patterns. Although these time-
sensitive methods well model the user’s dynamic interest changes, 
they do not explicitly model the user’s relatively stable interest. 
Meanwhile, most methods attempt to learn the positive temporal 
collaborative signals. but ignoring the efectiveness of negative 
temporal signals. 

3 PRELIMINARY 

3.1 Problem Formulation 
Let U = {�1, �2, ..., � |� | } and V = {�1, �2, ..., � |� | } be user set and 
item set respectively. For each user � ∈ U, there is a chronological 
sequence of items interacted by �, denoted as �� = {�1, �2, ..., �� }, 
where � is the length of the sequence �� . For each item �� ∈ �� , 
it is associated with a set of attribute information including item 
category �� , item brand �� , item price �� and interaction times-
tamp �� . Generally, for a user �, given her/his sequence context 
� = {�1, �2, ..., ��−1} together with the associated item attribute 
information, the task of an SRS is to predict the next item (target 
item) �� which may interest �. 

3.2 Hawkes Processes in Sequential Modeling 
Hawkes Processes is one of the most classic evolutionary processes 
[3, 6]. The traditional Hawkes Processes is defned by the following 
conditional intensity function: ∑ 

�(�) = � (�) + � (� − �� ), (1) 
�� <� 

where � (�) represents the base intensity of the model. � and �� de-
note the happening time of the target event and that of the last event 
respectively. Hence, � − �� denotes the time interval between the 
target event and the last event. � (·) denotes the exciting function 
of a Hawkes Process. 

In practice, in the sequential recommendation scenario, a user’s 
interest changes over time, and thus the interest evolution process 
can be formalized as a Hawkes Process. Accordingly, the frst term 
� (�) in Eq (1) can be used to indicate the basic user interest in a 
target item �� . The second term in Eq (1) means the accumulative 
impact of all the historical context items bought before time � on 
the user’s interest at time � . 

4 METHODOLOGY 

4.1 Overview 
The framework of our proposed model is shown in Figure 2. Our 
model is mainly composed of (1) a temporal dynamic user interest 
modeling module, (2) a static user interest modeling module, and (3) 
a next-item prediction module. The temporal dynamic user interest 
modeling module models users’ dynamic interest which changes 
over time by taking the ID information of historically interacted 
items as the input. Specifcally, both the positive and negative exci-
tation of each historical interaction on the user’s next choice will 
be carefully considered. In addition, the temporal information (i.e., 
the time interval between a historical interaction and the next in-
teraction) is well utilized to measure how positive or negative the 
excitation is. The static user interest modeling module models users’ 
static interest in items based on static attribute information of items 
(e.g., item category, item brand) which are interacted by each user. 
Finally, both the learned dynamic interest and static interest are 
well integrated into the prediction module for the recommendation 
of the next item. 

4.2 Users’ Dynamic Interest Modeling 
Temporal point processes (TPPs) are a fexible and powerful para-
digm that is good at modeling discrete event sequences localized in 
a continuous time period. A sequence of items interacted by a given 
user in a period well falls into this scenario. Hence, it is natural to 
take a TPP as the basic structure to model user-item interaction 
sequences. However, a classical TPP usually considers the positive 
excitation of each prior event (e.g., user-item interaction) on the 
following event (e.g., a user’s next choice) and cannot model the 
possible negative excitation. Hence, they cannot be directly utilized 
to model both positive and/or negative excitation of a user’s his-
torical interactions on his/her next choice. To this end, we devise a 
novel Temporal Positive and Negative Excitation learning (TPNE) 
module to model both positive and negative excitation of historical 
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(b) User Static Interest Modelling (SIM)(a) User Dynamic Interest Modelling (DIM) with Temporal Positive and Negative Excitation (TPNE)
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Figure 2: The framework of our proposed SDIL framework. SDIL is composed of three main modules: (a) user Dynamic Interest 
Modeling module (DIM), (b) user Static Interest Modeling module (SIM), and (c) Next-item Prediction module. DIM captures a 
user’s evolutionary dynamic interest by carefully modeling the time-sensitive positive and negative excitation of the user’s 
historical interactions on the user’s current interest. The SIM captures the user’s relatively stable and high-level interest 
(e.g., interest in item category, brand) from the attribute information of interacted items. Finally, the prediction module well 
integrates both dynamic and static interest to obtain more precise interest for next-item prediction. 

interactions to well capture the user’s dynamic interest. More im-
portantly, TPNE is able to specify the excitation strength according 
to the happening time of each historical interaction. 

To be specifc, we take the TPP approach as a base architecture to 
build TPNE for capturing users’ dynamic interest. The most classic 
model for the TPP is the Hawkes process, which is formulated as:∑ 

�� (�) = �0 + � (�� − �� ), (2) 
�:�� <�� 

where �0 denotes the user’s basic interest in a candidate item. Í 
� (�� − �� ) denotes the historical user-item interaction’s � :�� <�� 

excitation on target item �� . For the frst term, it can be calculated 
as: 

�0 = �� + �� + �� , (3)
ℎ ��� 

where �ℎ denotes the user historical interest embedding revealed 
from its historically interacted items and ��� denotes the target 
item ID embeddings. �� and �� denote the user bias and item bias 
respectively. To well model the relationship between �ℎ and ��� , we 
adopt the self-attention module to train the basic interest value �0. 

Given a user �, the input sequence is made up of item IDs se-
quence �� = {�1, �2, ..., �� }. To obtain a unique dense embedding 
for each item ID, we use a linear embedding layer. Then we can 
get the input item embedding matrix � ∈ R |� |�� (|� | denotes the 

number of items and � denotes the dimension of item embeddings). 
For each item, its embedding �� = � (�) ∈ R1�� . Then we can in-
put �� ’s item IDs to � and obtain the user �’s item embedding 
sequences and represent it as a matrix � (�� ). Then, following pre-
vious works [14, 34, 35], we introduce the position embedding ���� 
in each timestamp so as to add the position information of histor-
ical items. The input are item ID embeddings’ matrix � (�� ) and 
corresponding position embeddings ���� : 

�� = ��� ((� (�� )+���� )� � , (� (�� )+���� )� � , (� (�� )+���� )� � ), 
(4)� � 

��⊤ 
���� = ���������(�, �,� ) = sofmax √ � , (5) 

� 
where Q, K, and V denote query, key, and value respectively.� � ,� � 

and � � denote the linear transformation matrices. 

� (�� ) = ���������(�� + ������� (� �� (�� )). (6) 

Similar to previous works [34, 35], we introduce the LayerNorm, 
Dropout, and FFN layers to alleviate the over-ftting problem. Fi-
nally, we adopt the average pooling operation to get the user his-
torical interest embedding �ℎ : 

�∑−11 
�ℎ = � (�� )� , (7)|� | − 1 

�=1 
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where |� | denotes the length of the user � sequence. Then we can 
calculate the the frst term �� (��� = � (�� )) as Eq. (3). 

For the second term, it denotes the multi-excitation process, 
which represents the user history items’ impact on the target item, 
that is to say, the dynamic user interest in target item �� . Thus, it 
is important to curve the dynamic temporal kernel function. 

Current Hawkes Process or Poisson process modeling states that 
all past events should have positive infuences on the occurrence 
of current events. However, in real-world applications, there are 
many situations that past events give negative efects on current 
events. For example, after a user bought a new iPhone, in the short-
term, this purchase action would give a negative excitation signal to 
other brand mobile phones. Inspired by previous work[28][29][4], 
we propose modeling both positive and negative excitation for 
SRS task, which is composed of two parts Positive Excitation 
Learning and Negative Excitation Learning. where �� denotes 
the positive factor, and �� denotes the negative factor. We leverage 
both positive and negative signals together, making up the reactive 
point processes: ∑ ∑ 

�� (�) = �0 + �� (�� − �� ) − �� (�� − � � ), (8) 
� :�� <�� � :� � <�� 

where �0 denotes the basic preference of the user on item �� as 
previously mentioned, �� denotes the happening time of positive 
interaction related to �� . In contrast, � � denotes the happening time 
of negative interaction related to �� . Then we will discuss them 
separately. 

4.2.1 Positive Excitation Learning. For seeking the positive 
correlation between historical items � and target item �� , we intro-
duce four diferent explicit relations: also_buy (�1), also_view (�2), 
share_brand (�3) and similar_item (�4) contained in the datasets. 
For also_buy and share_brand relations, we regard them as com-
plementary relations. While, for also_view and similar_item(two 
items have a similar price within the same category), we regard 
them as substitute relations. Then positive excitation learning can 
be defned as: ∑ 

�� (�� − �� ) = ��� (�� , �� )K1 (�� − �� ), (9) 
�:�� <� 

where ��� denotes the indicator function, if historical item �� has 
a relation � ∈ {� 1, � 2, � 3, � 4} with �� , then the ��� =1, otherwise 0. 
It bridges the excitation between context information and target 
user interest. K1 (·) denotes the positive temporal kernel function, 
which is composed of two parts as follow:� � � � 

K� 1 (Δ�1) = � Δ�1 | 0, �� + � Δ�1 | �2 
�, �� . (10)1 2 

Previous works [28, 34] commonly model the short-term posi-
tive efect of historical items on target item, which only leverages 
the complementary information(� 1 and � 3) to obtain the positive 
excitation. We also model this positive complementary relation � � 
signal in the frst term � Δ�1 | 0, �� , (Δ�1 = �� − �� represents 1 
the time interval between the target item �� and the related his-
torical item �� ). �1 

� is decided by item ID �� , which is item-specifc 
parameter. We leverage a normal distribution function to simulate 
the user dynamic interest changes. For example, if a user buys a 
mobile phone, who may have a high possibility to buy accessories 
for the mobile phone in a short-term window, such as mobile phone 

flm, matching earphones and so on. However, with the growth of 
time and the aging of the mobile phone, the interest of users to 
buy the corresponding supporting products would gradually de-
crease. Thus, we choose a mean equals to 0 normal distribution to 
model the user interest decay process. For the second term, which 
happens because many items purchased by users have correspond-
ing lifespans. When the product life cycle is just approaching, the 
probability of users purchasing similar substitute products will be 
a strong positive incentive. For example, if a user buys a mobile 
phone, and he/she needs to replace a brand new mobile phone one 
year later, then this will bring a positive excitation for the substitute 
relationship of similar items. We model this temporal relationship 
using a normal distribution with mean �2 

� , which is also related to 
�� , which assumes the user begins to buy the substitute products 
after �2 

� time interval. 

4.2.2 Negative Excitation Learning. On the other hand, for 
seeking the negative correlation between historical items � and tar-
get item �� , we leverage two diferent explicit relations: also_view 
(�2) and similar_item (�4) contained in the datasets. We treat them 
as substitute relations and defne the negative excitation learning 
as: ∑ 

�� (�� − � � ) = ��� (� � , �� )K2 (�� − � � ), (11) 
� :� � <�� 

where ��� denotes the indicator function, if historical item � � has 
a relation � ∈ {� 2, � 4} with �� , then the ��� =1, otherwise 0. K2 (·) 
denotes the negative temporal kernel function:� � 

K2 (Δ�2) = −� Δ�2 | 0, �� , (12)3� � 
where � Δ�2 | 0, �� is a normal distribution of Δ� (Δ�2 = �� − � � )�3 
with 0 mean and �3 

� standard deviation. �
�
� 
3 is also related to � � . 

From an empirical analysis, users rarely buy a large number of 
substitutes of the same category in a short period of time. For 
example, a simple example, a user has just purchased a Mac laptop, 
so the probability of him/her buying another Lenovo laptop in 
the short term would be very low. However, with time goes by, 
the negative efect would decrease gradually, so we use a negative 
normal distribution with � = 0 to ft this process. (Noting that �2 

� , 
�1 
� , �2 

� and �3 
� are all learn-able parameters.) 

In summary, two diferent temporal patterns of SRS are mod-
eled positive excitation learning processes and negative excitation 
learning processes. Since these two important temporal patterns 
occur frequently across the whole user-item interaction history, 
they can provide extra-temporal information to help us capture the 
dynamics of users’ interest. 

4.3 Users’ Static Interest Modeling 
In real-world scenarios, users also have relatively fxed preferences 
in sequential decision-making, such as high loyalty to a certain 
brand and the choice of the item price, which are relatively stable 
in the long term and not easy to change. Therefore, we believe that 
this part of the more stable user interest should also be included in 
the modeling to achieve more accurate recommendations. 

To represent the users’ relatively stable interest in their interac-
tion history, we adopt the feature-based self-attention module to 
model the user’s static interest. Because item IDs do not clearly indi-
cate fne-grained attributes that users are interested in, we leverage 
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the feature-based self-attention block to search for users’ prefer-
ences on static feature-level patterns. Specifcally, we project the 
discrete and heterogeneous attributes of items into low-dimensional 
dense vectors and fuse these vectors, then use multi-head self-
attention to model the user’s static interest. Without loss of gen-
erality, we choose the category, brand, and price of three diferent 
side information to comprehensively represent diferent aspects 
of one item. We also use a linear embedding layer to obtain cate-
gory embedding matrix � ∈ � |� |×� , brand embedding matrix and 
� ∈ � |� |×� price embedding matrix � ∈ � |� |×� ( |� |,|� |,|� | denotes 
the number of categories, brands and price bins respectively). Fur-

∈ �1�� ∈ �1�� and �� thermore, the �� , �� ∈ �1�� to denote each 
item diferent feature embeddings respectively. Our approach is 
easily extended to include more features. We adopt a simple yet 
efective additive feature fusion mode: 

�� = �� + �� + �� , (13) 

where �� ∈ � denotes the fused feature-level item �� representation, 
� denotes the stacked fusion matrices. Then for each user �, we 
can get his/her fused feature sequence {�1,�2,�3,...,�� }. We utilize 
the multi-head self-attention network[26] to model the user’s his-
toric static interest. In the feature-level self-attention module, the 
query(�), key(� ), and value(� ) are the same and equal to � , and we 
use three diferent projection transformation matrices to convert 
them into the same subspace: 

�� = ��� (�� � , �� � , �� � ). (14) 

Noting that we do not use the position here because we assume 
that user static interest is relatively stable and independent of user-
item interaction timestamp. Where � � ,� � , and � � are the linear 
transformation matrices. Then we adopt the multi-head attention 
mechanism to gain more semantic information from diferent sub-
spaces. 

�� = �����ℎ��� (� ) = ������ (ℎ1, ℎ2, ..., ℎ�� )� � , (15) 

� 
ℎ� = ��� (��

� , �� � , ���
� ), (16)� 

where �� denotes the length of diferent heads, and here we also 
apply the layer normalization, FFN layers and residual connection 
module following previous works [41][35], alleviating the over-
ftting problem in the training phase. 

�� = ���������(�� + �� ), (17) 

�� � (�� ) = ReLU(�� �1 + �1)�2 + �2, (18) 

where �1,�2 and �1, �2 denote the learnable parameters, we sum 
pooling all the ℎ� in each user sequence to obtain the user static 
interest representation �� . 

|�∑|−11 
�� = �� , (19)|� | − 1 

�=1 

�� provides more stable user interest on certain attributes (i.e. brand, 
price in our case), such characteristics may not be easily perceived 
but are indeed potential consumption habits of users. 

4.4 Next-item Prediction 
Since both dynamic user interest and static user interest are vital in 
SRS task, it is crucial to combine them and as the input of the down-
stream prediction module for next-item prediction. Hence, inspired 
by previous works [18, 38], we leverage the gate fusion module to 
fuse the dynamic embedding �ℎ and static interest embedding �� 
so as to better next-item prediction. 

� = � (�1�� + �2�ℎ + �), (20) 

�� = � ⊙ �� + (1 − �) ⊙ �ℎ, (21) 
where �1,�2, and � are the learnable parameters in the gating layer. 
⊙ denotes the element-wise multiplication and � ∈ R1�� denotes 
the learnable gate. Since there is some redundant information be-
tween user dynamic interest and static interest, we adaptively pass 
the informative messages and restrain the useless ones to obtain 
the fnal interest representation �� . In order to learn the parameters 
of the SDIL framework, we adopt the pairwise ranking loss (BPR 
loss) [20] to optimize our model: 

�� ∑ ∑ � � 
L� = − log � �̂�� − �̂� � , (22) 

� ∈U �=1 

�̂�� = �� �� + �� ,� , �̂� � = �� � � + �� , � (23)
� � 

where � represents the sigmoid function, �̂�� represents the fnal 
preference score of user � to positive item � while �̂� � represents 
the fnal preference score of user � to negative item � . 

5 EXPERIMENTS 

5.1 Experimental Setting 
5.1.1 Dataset Preparation and Baselines. We conduct exper-
iments on publicly accessible Amazon datasets [19]. We choose 
three representative sub-datasets from Amazon datasets: Beauty, 
Cell Phones and Accessories (Cellphones) and Toys and Games (Toys) 
and keep the ‘5-core’ datasets [42][21][2], which flter out user-
item interaction sequences with length less than 5. The statistics of 
evaluation datasets are shown at Table 2 in Appendix A. Following 
the previous works[29][28], we take "also buy" as complementary 
relations and "also view" as substitute relations between items, i.e., 
items �1 and �2 are complementary if most users who buy �1 also 
buy �2. In addition, we introduce two more efective item relation-
ships: (1) items of the same brand have complementary relations 
(e.g., iPhone and AirPod), and (2) items of the same category with 
similar prices have substitute relation (e.g., Canon cameras and 
Nikon cameras). Furthermore, we also take some item attribute 
information into account, including fne-grained item category, 
item brand and item price. Item category and brand are categorical 
features and we use the unique one-hot encoding to represent them. 
For price information, we bin and cut them into 10 intervals. 

For reproducibility, we follow the commonly used benchmark 
setting of ReChorus [28, 29] to set up our experiments. Specifcally, 
for each user, we frst discard duplicated interaction sequences 
and sort the items in each user’s sequence chronologically by their 
timestamp. Furthermore, the maximum length of interaction se-
quences is set to 20. If there are more than 20 interactions in a 
sequence, we adopt the latest 20 interactions. If the number of inter-
actions in a sequence is less than 20, we make it up to 20 by padding 
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virtual items with the ID of 0. For all baselines on all three experi-
mental datasets, hidden size and batch size is set to 64. Following 
the common practice in sequential recommendations, we leave the 
interactions happening at the latest time as the test dataset and the 
interactions at the second latest time as the validation dataset. To 
evaluate the performance of our model TPNE, we select 10 represen-
tative and/or state-of-the-art recommendation models as baselines. 
The detailed information are listed in the Appendix E. 

5.1.2 Implementation Details and Parameter Setings. To 
ensure fair comparisons, we follow the ReChorus’ baseline imple-
mentation1. Specifcally, for both our model and all baseline models, 
we set the embedding size and batch size to 64. The number of train-
ing epochs for all models is set to 150 and an early-stop strategy is 
used. When a model’s performance on the validation set decreases 
for 10 consecutive rounds, the training will stop. Other parameter 
settings for each baseline are specifed in Appendix F. 

For our SDIL model, we set the number of heads in the multi-
head attention model of SIM to 4 and the number of layers of both 
DIM and SIM to 2 by using a grid search from 1 to 8 with a step of 
1. We set the embedding dimension of all the attributes including 
price, brand, and category to 64. Our model is implemented by 
PyTorch. we pre-trained the item embedding with a learning rate of 
5e-4 and the main model is optimized by Adam optimizer with a 
learning rate of 1e-4. 

5.1.3 Evaluation Metrics. We use three commonly used metrics 
including Normalized Discounted Cumulative Gain @K (NDCG@K), 
Hit Ratio @K (HR@K) and Mean Reciprocal Rank (MRR) [14, 29] 
to evaluate the performance of all compared methods. For all the 
baseline models, we generate the ranking list of items for each 
testing interaction. Both of them are applied with � chosen from 
{5, 10, 20}. In order to accelerate the evaluation, following the work 
[29], we evaluate the ranking results with 99 randomly selected 
negative items. Meanwhile, we follow the setting in[30], using the 
paired t-test with p<0.05 for the signifcance test. 

5.2 Performance Comparison with Baselines 
Table 1 reports the comparison results between our method and 
10 diferent baseline methods on three datasets. The best results 
and the second-best results across all methods are in bold and 
underlined respectively. We have the following observations: 

(1) First, we can fnd that all the non-time-sensitive sequential 
methods such as GRU4Rec [10, 11], Caser [39] surpass the non-
sequential method BPR, which indicates the efectiveness of model-
ing sequential information. Meanwhile, NARM utilizes both global 
and local encoders to model the long- and short-term interest of 
users and thus performs better than GRU4Rec and Caser. More-
over, the self attention-based SRS, i.e., SASRec [14], consistently 
outperforms previous traditional deep learning methods including 
CNN-based Caser and RNN-based GRU4Rec, proving the efective-
ness of using the attention mechanism to encode sequence data. 

(2) Second, more advanced time-sensitive sequential models, 
such as TiSASRec [17], generally inherit the attention-based en-
coder while introducing extra-temporal signals to further improve 
the recommendation performance. Specifcally, TiSASRec explicitly 

1https://github.com/THUwangcy/ReChorus 

models both the absolute positions of items as well as time inter-
vals between them in a sequence, and thus it outperforms SARS 
w.r.t most evaluation metrics on most datasets. SLRS+ [28] intro-
duces both knowledge-graph information and the multi-excitation 
of items to further enhance the recommendation performance. Cho-
rus [29] further models the diferent situations of the temporal 
efect of user-item interactions on item embedding level and thus 
outperforms SLRS+. However, due to the limited representation 
ability of its utilized base model, Chorus shows the over-ftting issue. 
AHMP [34] models the user temporal category-level consumption 
excitation via self-attention models, achieving the third-best results 
on most datasets. KDA [27] designs the virtual relations between 
items to enhance the relation learning between items, which helps 
KDA obtain a signifcant improvement over other baselines. 

(3) Third, our proposed SDIL model consistently outperforms all 
baselines in all datasets. The average improvement on the Cell-
phones dataset compared with the best-performing baseline is 
10.45% w.r.t MRR. The reason is obvious. Diferent from most of 
the existing SRS methods, which ignore modeling either users’ rel-
atively stable static interest, or the negative excitation of historical 
interactions on user’s next choice, our proposed SDIL model has 
been carefully designed to well address these issues. To be specifc, 
SDIL not only well models users’ static interest in items via carefully 
capturing users’ interest on item attribute level, but also comprehen-
sively model users’ dynamic interest via the well-designed TPNE 
module. More importantly, TPNE is able to model both positive and 
negative excitation of users’ historical interactions on their next 
choice, leading to signifcant performance improvement. 

5.3 Ablation Study 
To analyze the rationality and efectiveness of our designed com-
ponents in the SDIL model, we conduct the ablation study with 
three variants. SDIL-1: Only uses static interest module to pre-
dict the next item; SDIL-2: Only uses dynamic interest module 
to predict the next item; SDIL-3: Uses both dynamic and static 
interest module to predict the next item without modeling exci-
tation. Figure 3 presents the performance of these three variants 
and the full model SDIL on the three experimental datasets. First, 
compare SDIL-1 and SDIL, we fnd the performance of SDIL-1 sig-
nifcantly decreases when dropping the dynamic interest modeling 
module TPNE from SDIL. This proves the extremely importance 
of our designed TPNE module. Second, the comparison between 
SDIL-2 and SDIL demonstrates that static interest modeling is also 
vital for recommendation performance. The performance clearly 
decreases without it. Third, the comparison between SDIL-3 and 
SDIL demonstrates the importance of modeling historical interac-
tions’ excitation on users’ next choice. In summary, the dropping 
of any of our designed components would lead to a clear reduc-
tion in recommendation performance, this efectively verifes the 
efectiveness and rationality of our design. 

5.4 The Efectiveness of Modeling Negative 
Excitation 

To verify the rationality of incorporating negative excitation and 
the efectiveness of our proposed TPNE module, we keep the SDIL 
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Table 1: Overall performance. Bold scores represent the highest results of all methods. Underlined scores stand for the second-
highest results. Our model achieves the state-of-the-art result among all baseline models. ∗ means the improvement is signifcant 
at � < 0.05. 

Dataset Metric BPR GRU4Rec Caser NARM SASRec TiSASRec SLRS+ Chorus AHMP KDA SDIL Improv. 

HR@5 0.3317 0.3202 0.3210 0.3334 0.3666 0.3872 0.4339 0.4536 0.4566 0.4860 0.4926∗ 1.36% 
HR@10 0.4355 0.4311 0.4345 0.4462 0.4590 0.4559 0.5337 0.5698 0.5519 0.5997 0.6128∗ 2.18% 
HR@20 0.5505 0.5693 0.5757 0.5823 0.5743 0.5700 0.6361 0.6838 0.6599 0.7144 0.7323∗ 2.51% 
NDCG@5 0.2361 0.2271 0.2246 0.2348 0.2797 0.2904 0.3319 0.3386 0.3496 0.3648 0.3698∗ 1.37% 

Beauty NDCG@10 
NDCG@20 

0.2697 
0.2987 

0.2628 
0.2976 

0.2612 
0.2967 

0.2712 
0.3055 

0.3094 
0.3385 

0.3036 
0.3324 

0.3642 
0.3900 

0.3762 
0.4050 

0.3803 
0.4076 

0.4016 
0.4306 

0.4088∗ 

0.4390∗ 
1.79% 
1.95% 

MRR 0.2363 0.2271 0.2246 0.2366 0.2923 0.2904 0.3319 0.3386 0.3421 0.3549 0.3610∗ 1.72% 

Cellphone 

HR@5 0.3387 0.3015 0.3937 0.4168 0.4439 0.4520 0.4696 0.4697 0.5045 
HR@10 0.4528 0.4301 0.5309 0.5509 0.5595 0.5767 0.5641 0.5929 0.6132 
HR@20 0.5852 0.5918 0.6810 0.6974 0.6817 0.7022 0.6637 0.7152 0.7284 
NDCG@5 0.2430 0.2085 0.2800 0.2995 0.3353 0.3344 0.3634 0.3530 0.3852 
NDCG@10 0.2798 0.2498 0.3243 0.3429 0.3727 0.3748 0.3939 0.3929 0.4204 
NDCG@20 0.3131 0.2905 0.3622 0.3799 0.4036 0.4065 0.4191 0.4238 0.4495 
MRR 0.2453 0.2271 0.2246 0.2969 0.2923 0.2904 0.3319 0.3386 0.3747 

0.5497 
0.6745 
0.7923 
0.4119 
0.4523 
0.4821 
0.3666 

0.5538∗ 

0.6792∗ 

0.8028∗ 

0.4188∗ 

0.4595∗ 

0.4908∗ 

0.4049∗ 

0.75% 
0.70% 
1.33% 
1.69% 
1.59% 
1.80% 
10.45% 

Toys 

HR@5 
HR@10 
HR@20 
NDCG@5 
NDCG@10 
NDCG@20 
MRR 

0.2897 
0.3897 
0.5061 
0.2068 
0.2390 
0.2683 
0.2116 

0.2902 
0.4060 
0.5546 
0.1974 
0.2348 
0.2721 
0.2271 

0.2898 
0.4103 
0.5590 
0.1947 
0.2336 
0.2710 
0.2246 

0.3173 
0.4336 
0.5777 
0.2206 
0.2581 
0.2944 
0.2244 

0.3602 
0.4570 
0.5700 
0.2738 
0.3050 
0.3334 
0.2923 

0.3475 
0.4608 
0.6003 
0.2535 
0.2901 
0.3253 
0.2904 

0.4368 
0.5345 
0.6440 
0.3490 
0.3804 
0.4081 
0.3319 

0.4124 
0.5203 
0.6443 
0.3132 
0.3480 
0.3793 
0.3386 

0.4603 
0.5587 
0.6621 
0.3600 
0.3918 
0.4179 
0.3547 

0.4805 
0.5882 
0.7019 
0.3660 
0.4007 
0.4294 
0.3666 

0.4953∗ 

0.6069∗ 

0.7248∗ 

0.3797∗ 

0.4157∗ 

0.4454∗ 

0.3713∗ 

3.08% 
3.18% 
3.26% 
3.74% 
3.74% 
3.73% 
1.28% 

(a) Beauty Dataset (b) Cellphones Dataset (c) Toys Dataset 
Figure 3: Ablation study on the model performance (HR@5 and NDCG@5) on diferent datasets. 

framework while changing its TPNE module to TPE to obtain an-
other variant SDIL-TPE. TPE models users’ dynamic interest by 
only considering temporal positive excitation. The result is pro-
vided in Appendix B. As Table 3 shows, SDIL consistently surpasses 
SDIL-TPE, indicating that the comprehensive modeling of both 
positive and negative excitation is more efective compared with 
the modeling of only positive excitation. 

5.5 Parameter Sensitivity Test & Case Study 
We conduct the parameter sensitivity test to see how the key model 
parameters will afect the performance of our SDIL model. The 
result is shown in Appendix C to save space. In addition, we conduct 
case studies to show some insights on how our proposed model 
can work better in a straightforward way. Due to the limited space, 
the details are provided in Appendix D. 

6 CONCLUSION 
In this paper, we propose a novel Static-Dynamic Interest Learning 
(SDIL) framework to comprehensively model users’ static interest 
and dynamic interest in items for generating accurate sequential 
recommendations. More importantly, to comprehensively model 
users’ dynamic interest, we devise a novel Temporal Positive and 
Negative Excitation modeling (TPNE) module. TPNE can not only 
well capture both the positive and negative excitation of each user’s 
historical interactions on his/her next choice of items, but also is 
able to specify the excitation strength for each historical interaction 
according to its happening time. Our extensive experimental results 
on three real-world datasets validate the superiority of our proposed 
model over state-of-the-art methods. In the future, we will explore 
how to better model users’ static interest to further enhance the 
performance of our model. 
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A DATA DESCRIPTION 

Table 2: Statistics of the datasets after preprocessing. 

Specs. Beauty Cellphones Toys 

# Users 22,363 27,879 19,412 
# Items 12,101 10,429 11,924 
# Avg. Seq Length 8.8 7.0 8.6 
# Interactions 198,502 194,439 167,597 
# Sparsity 99.93% 99.94% 99.93% 
# Item Categories 148 20 145 

B THE EFFECTIVENESS OF NEGATIVE 
EXCITATION 

To verify the rationality of incorporating negative excitation and 
the efectiveness of our proposed TPNE module, we keep the SDIL 
framework while changing its TPNE module to TPE to obtain an-
other variant SDIL-TPE. TPE models users’ dynamic interest by only 
considering temporal positive excitation only. As Table 3 shows, 
SDIL consistently surpasses SDIL-TPE, indicating that the compre-
hensive modeling of both positive and negative excitation is more 
efective compared with the modeling of only positive excitation. 

Table 3: Performance comparison between SDIL-TPE and 
SDIL. ∗ means the improvement is signifcant at � < 0.05. 

Dataset Metrics SDIL-TPE SDIL 

HR@5 0.4825 0.4926∗ 
HR@10 0.6054 0.6128∗ 

Beauty NDCG@5 0.3487 0.3698∗ 
NDCG@10 0.4014 0.4088∗ 
MRR 0.3534 0.3602∗ 

HR@5 0.5521 0.5538∗ 
HR@10 0.6772 0.6792∗ 

Cellphones NDCG@5 0.4102 0.4188∗ 
NDCG@10 0.4422 0.4595∗ 
MRR 0.4038 0.4049∗ 

HR@5 0.4871 0.4953∗ 
HR@10 0.5979 0.6069∗ 

Toys NDCG@5 0.3741 0.3797∗ 
NDCG@10 0.3670 0.4157∗ 
MRR 0.3670 0.3713∗ 

C PARAMETER SENSITIVITY ANALYSIS 
In this section, we will discuss the parameter setting’s efect on 
the model performance. The results are presented in Figure 5. The 
embedding size of item representation does afect the performance 
of SRS models. We can see that the performance of the model 
increases consistently as the embedding size increases. 

Besides, we also conduct experiments about the diferent multi-
head numbers and transformer layers. The head number of TPNE 
layers is searched from {1,2,4,6} and the Transfomer layer number is 
searched from {0,1,2,3,4}. We can fnd that the performance increases 
as the head number increases, while when the layer or head number 
is too large, the model begins to over-ft. 

Figure 4: Embedding size setting’s efect on the model per-
formance. (HR@5 and NDCG@10). 

Figure 5: Diferent transformer layers setting’s efect on the 
model performance. (HR@10 and NDCG@10). 

D CASE STUDY 
To get a better understanding of the efectiveness of our TPNE in a 
specifc context, we randomly select a user sequence and list the 
recommendation results of TPNE and its variant TPE. In Figure 
6, the user’s interaction history demonstrates that the user frst 
purchased the Samsung S4 phone and then purchased the corre-
sponding accessories, including the wallet case holder, car phone 
holder, and screen protector. For the next-item prediction task, the 
ground-truth item is a blue-tooth earpiece. For the TPE using only 
positive incentive learning, although it can capture the positive ex-
citation between the phone and the earpiece, it also introduces the 
positive excitation with the screen protector. However, the user has 
already purchased the screen protector in the previous moment, so 
it will lead to homogeneous recommendations, resulting in inaccu-
rate recommendation results. As for TPNE, our model considers the 
negative excitation of similar items in the short term, in this case, 
for the similar screen protector items in timestamp � , the model 
will come out with a negative mutual exclusion signal. Thus, the 
homogeneous recommendation can be efectively alleviated, and 
better recommendation performance can be obtained. It verifes the 
importance of considering both positive and negative excitation 
learning. Moreover, to prove the superiority of SDIL in combining 
both dynamic and static interest contexts. We listed the ranking 
results of DIL, SIL, and SDIL. As Figure 7 illustrated, we random 
sample one user interaction item history. We can also fnd our SDIL 
can well capture the user intent in the next-item prediction task. 

E BASELINES FOR COMPARISONS 
To evaluate the performance of our model TPNE, we select 10 
representative and/or state-of-the-art recommendation models as 
baselines. They are classifed into the following three groups: (1) 
Non-sequential models: BPR [20]: This model characterizes the 
pairwise interactions via a matrix factorization model and optimizes 
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Recommendation List 2 

(2) Positive and Negative Excitation

1 2 10

. . .

(1) Positive Excitation only

Recommendation List 1 

Positive Excitation Positive Excitation

Negative Excitation

Ground-truth Item

Positve Excitation

Negative Excitation

. . .

Samsung S4 Screen Protector

Historical items

Samsung S4 Screen Protector

Historical items

Screen ProtectorEarpiece Slim Fit Case

1 2 6

. . .

EarpieceScreen ProtectorScreen Protector

. . .

Figure 6: Illustration of the ranking results of TPE and TPNE. 
The item highlighted in the red boxes is the ground-truth 
item. 

Ranking List ResultsBeauty Dataset

Sampled User History 
Items 1 … 72

Static Interest Modelling

Precise Interest Modelling

Dynamic Interest Modelling

…

…

…

Figure 7: Illustration of the ranking results of SIM, DIM and 
DSIM. The item highlighted in the red boxes is the ground-
truth item. 

through a pair-wise Bayesian Personalized Ranking loss. (2) Non-
time-sensitive sequential models: GRU4Rec [10]: This model 
uses the GRU to model the user interaction sequence and gives the f-
nal recommendation. NARM [16]: It is a classic long- and short-term 
user interest modeling, which designs two RNN-based global en-
coders and a local encoder to model the user’s long and short-term 
interest respectively. Caser [39]: This model embeds items in user 
interaction history as image form, using convolutional flters for the 
recommendation. SASRec [14]: This model leverages users’ longer-
term semantics as well as their recent actions simultaneously for 
accurate next-item recommendations. (3) Time-sensitive sequen-
tial models: TiSASRec [17]: This model leverages the timestamp 
in the user-item interaction, exploring the diferent time intervals’ 
infuence in the next item prediction. SLRS+ [28]: SLRS combines 
Hawkes process and MF into one framework, which aims at model-
ing the user repeat consumption in the sequential recommendation. 
Since the Amazon dataset removes the repeat consumption in the 
test set, SLRS+ uses the Hawkes process to model the relations 
including also view and also buy behaviors. AMHP [34]: This model 
introduces the repeat category consumption into sequential recom-
mendation and adopts the self-attention architecture as the main 
model. Chorus [29]: This model is a state-of-the-art method with 

Chengkai, et al. 

item relations and temporal evolution. KDA [27]: KDA devises rela-
tional intensity and frequency-domain embeddings to adaptively 
determine the importance of historical interactions. 

F BASELINE PARAMETER SETTINGS 
For fair comparison, we carefully tuned the model parameters of 
all the baselines on the validation set. Then we choose the model 
parameters that achieve the best performance on the validation set 
to compare. In Caser, the number of horizon convolution kernels 
is set as 64, the number of vertical convolution kernels is set as 32 
and the union window size is set as 5. In GRU4Rec, the dimension 
of the hidden layer is set as 64. In SARS and TiSARS, the number 
of heads is set as 1. In SLRS+ and Chorus, the learning rate is set as 
5e-4. In AHMP, both the head number and layer number are set as 
1. The learning rate is set as 1e-4. In KDA, the number of heads is 
set as 4, and the learning rate is set as 1e-3. Besides, the learning of 
all the models is carried out fve times to report the average results. 
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